Hierarchical Self-Organization of ABn Dendron-like Molecules into a Supramolecular Lattice Sequence
نویسندگان
چکیده
To understand the hierarchical self-organization behaviors of soft materials as well as their dependence on molecular geometry, a series of AB n dendron-like molecules based on polyhedral oligomeric silsesquioxane (POSS) nanoparticles were designed and synthesized. The apex of these molecules is a hydrophilic POSS cage with 14 hydroxyl groups (denoted DPOSS). At its periphery, there are different numbers (n = 1-8) of hydrophobic POSS cages with seven isobutyl groups (denoted BPOSS), connected to the apical DPOSS via flexible dendron type linker(s). By varying the BPOSS number from one to seven, a supramolecular lattice formation sequence ranging from lamella (DPOSS-BPOSS), double gyroid (space group of Ia3̅d, DPOSS-BPOSS2), hexagonal cylinder (plane group of P6mm, DPOSS-BPOSS3), Frank-Kasper A15 (space group of Pm3̅n, DPOSS-BPOSS4, DPOSS-BPOSS5, and DPOSS-BPOSS6), to Frank-Kasper sigma (space group of P42/mnm, DPOSS-BPOSS7) phases can be observed. The nanostructure formations in this series of AB n dendron-like molecules are mainly directed by the molecular geometric shapes. Furthermore, within each spherical motif, the spherical core consists hydrophilic DPOSS cages with flexible linkages, while the hydrophobic BPOSS cages form the relative rigid shell, and contact with neighbors to provide decreased interfaces among the spherical motifs for constructing final polyhedral motifs in these Frank-Kasper lattices. This study provides the design principle of molecules with specific geometric shapes and functional groups to achieve anticipated structures and macroscopic properties.
منابع مشابه
Giant supramolecular liquid crystal lattice.
Self-organized supramolecular organic nanostructures have potential applications that include molecular electronics, photonics, and precursors for nanoporous catalysts. Accordingly, understanding how self-assembly is controlled by molecular architecture will enable the design of increasingly complex structures. We report a liquid crystal (LC) phase with a tetragonal three-dimensional unit cell ...
متن کاملThe molecular basis of self-assembly of dendron-rod-coils into one-dimensional nanostructures.
We describe here a comprehensive study of solution and solid-state properties of self-assembling triblock molecules composed of a hydrophilic dendron covalently linked to an aromatic rigid rod segment, which is in turn connected to a hydrophobic flexible coil. These dendron-rod-coil (DRC) molecules form well-defined supramolecular structures that possess a ribbonlike morphology as revealed by t...
متن کاملCompression, supramolecular organization and free radical polymerization of ethylene gas
At low pressure, ethylene gas consists of single translating and rotating molecules and behaves as an ideal gas. With decrease of free volume by compression, various rotating supramolecular particles are formed, which require less space for the movement: molecular pairs, bimolecules and oligomolecules. The appearance of a new kind of particles is manifested as a phase transition of the second o...
متن کاملAssembling a lasing hybrid material with supramolecular polymers and nanocrystals.
The combination of bottom-up and top-down processes to organize nanophases in hybrid materials is a key strategy to create functional materials. We found that oxide and sulphide nanocrystals become spontaneously dispersed in organic media during the self-assembly of nanoribbon supramolecular polymers. These nanoribbon polymers form by self-assembly of dendron rodcoil molecules, which contain th...
متن کاملA Light Scattering Study of the Self-Assembly of Dendron Rod-Coil Molecules
Dendron rod-coil molecules are a novel supramolecular building block, comprising a dendritic unit, a rodlike unit, and a coil unit (J. Am. Chem. Soc. 2001, 123, 4105). It was proposed that in solution these molecules assemble into ribbonlike aggregates of high aspect ratio. We report here on the self-assembly of DRC-molecules in 2-propanol and ethyl acetate as studied with static and dynamic li...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2017